Abstract

Temporal lobe epilepsy (TLE) is defined as the sporadic occurrence of spontaneous recurrent seizures, and its pathogenesis is complex. SHP-2 (Src homology 2-containing protein tyrosine phosphatase 2) is a widely expressed cytosolic tyrosine phosphatase protein that participates in the regulation of inflammation, angiogenesis, gliosis, neurogenesis and apoptosis, suggesting a potential role of SHP-2 in TLE. Therefore, we investigated the expression patterns of SHP-2 in the epileptogenic brain tissue of intractable TLE patients and the various effects of treatment with the SHP-2-specific inhibitor SHP099 on a pilocarpine model. Western blotting and immunohistochemistry results confirmed that SHP-2 expression was upregulated in the temporal neocortex of patients with TLE. Double-labeling experiments revealed that SHP-2 was highly expressed in neurons, astrocytes, microglia and vascular endothelial cells in the epileptic foci of TLE patients. In the pilocarpine-induced C57BL/6 mouse model, SHP-2 upregulation in the hippocampus began one day after status epilepticus, reached a peak at 21days and then maintained a significantly high level until day 60. Similarly, we found a remarkable increase in SHP-2 expression at 1, 7, 21 and 60days post-SE in the temporal neocortex. In addition, we also showed that SHP099 increased reactive gliosis, the release of IL-1β, neuronal apoptosis and neuronal loss, while reduced neurogenesis and albumin leakage. Taken together, the increased expression of SHP-2 in the epileptic zone may be involved in the process of TLE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call