Abstract

Periostin, a secreted extracellular matrix protein, is highly expressed in wound healing and in various types of human cancer and is involved in angiogenesis. Keloids, considered dermal benign tumors, are granulomatous lesions characterized by capillary proliferation. However, the underlying regulatory mechanism of angiogenesis in keloids remains to be elucidated. The present study aimed to examine the effect of periostin on angiogenesis in keloids. The expression of periostin was upregulated and the vessel density was higher in human keloids compared with normal tissue, observed following staining with CD31 and CD105. Periostin demonstrated a markedly positive correlation with blood vessel density, which was assessed using CD31 staining (r=0.711; P<0.01) and a weak correlation was observed using CD105 staining (r=0.251; P<0.01). Conditioned medium from keloid fibroblasts (KFs) promoted the migration and tube formation of human umbilical vein endothelial cells (HUVECs) compared with normal fibroblasts and this effect may have been abrogated by the short hairpin RNA knockdown of periostin. Treatment with recombinant human periostin promoted the migration and tube formation of HUVECs by activating the extracellular signal-regulated kinase 1/2 and focal adhesion kinase signaling pathway. In addition, periostin increased the secretion of vascular endothelial growth factor and angiopoietin-1 in the KFs. In conclusion, these data suggested that upregulation in the level of periostin may promote angiogenesis directly and indirectly in keloids and may be a key factor in keloid development. Periostin may, therefore, be a promising therapeutic target in the treatment of keloids and other angioproliferative diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.