Abstract
Angiogenesis after ischemic stroke has important clinical significance, which stimulates endogenous recovery mechanisms and improves the neurological outcome. Enhancing angiogenesis may facilitate the function recovery from ischemic stroke. Recent studies have shown that aberrant expression of long noncoding RNAs (lncRNAs) is related to angiogenesis after ischemic stroke. Snhg1, a cancer-related lncRNA, has been reported to be upregulated after stroke. However, little is known about its role in stroke. In this study, we performed in vitro experiments to investigate the effects of Snhg1 on cell survival and angiogenesis and molecular mechanism in ischemic stroke. Oxygen-glucose deprivation/reoxygenation (OGD/R) was used to mimic ischemia/reperfusion injury in vitro. Sngh1 was increased in brain microvascular endothelial cells (BMECs) with the prolongation of exposure to OGD, and promoted BMEC survival under OGD/R condition, and angiogenesis after OGD/R treatment. miR-199a was identified and validated to be a direct target of Snhg1, and function effects of Snhg1 on BMEC survival and angiogenesis depended on miR-199a, which is involved in the regulation of hypoxia inducible factor and vascular endothelial cell growth factor expression. These findings contribute to a better understanding of the pathogenesis of ischemic stroke and facilitate the development of proangiogenesis therapy for this disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.