Abstract

Large amounts of antibiotics from different sources have been released into coastal environments, especially in high human-populated areas, but comprehensive studies of antibiotic footprint in wildlife are scarce. Here we assess occurrence of antibiotic resistant bacteria (ARB) and antibiotic resistance gene (ARG) both in sediments and gut microbiota of a long-distance migratory shorebird species in two coastal wetlands at a sparsely-populated area in Pacific Patagonian coasts with contrasting potential antibiotic sources, especially from aquaculture. We found 62% of sediment samples showing ARB, and ARGs similarly occurring in sediments at both bays. However multi-resistant ARB were found only at sediments in the bay surrounding aquaculture operations. An 87% of cloacal bird samples showed at least one ARB, with 63% being multi-resistant and some of them with a high potential pathogenicity. ARGs were present in 46% of the samples from birds, with similar multi-resistant frequencies among bays. Besides specific differences mainly associated to antibiotics used in salmon aquaculture that boosted ARB in sediments, ARB and ARGs occurrence was overall similar at two bays with contrasting main human activities, in spite of being a comparatively low human-populated area. Therefore, our results reinforce the idea that the antibiotic footprint may be widespread at a global scale and can extend beyond the geographical influence of antibiotic sources, especially at coastal environments where migratory shorebirds act both as reservoirs and potential spreaders of antibiotic resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call