Abstract

The end-Triassic mass extinction (ETE) is associated with a rise in CO2 due to eruptions of the Central Atlantic Magmatic Province (CAMP), and had a particularly dramatic effect on the Modern Fauna, so an understanding of the conditions that led to the ETE has relevance to current rising CO2 levels. Here, we report multiple phosphorite deposits in strata that immediately precede the ETE at Williston Lake, Canada, which allow the paleoenvironmental conditions leading up to the mass extinction to be investigated. The predominance of phosphatic coated grains within phoshorites indicates reworking in shallow water environments. Raman spectroscopy reveals that the phosphorites contain organic carbon, and petrographic and scanning electron microscopic analyses reveal that the phosphorites contain putative microfossils, potentially suggesting microbial involvement in a direct or indirect way. Thus, we favor a mechanism of phosphogenesis that involves microbial polyphosphate metabolism in which phosphatic deposits typically form at the interface of euxinic/anoxic and oxic conditions. When combined with data from deeper water deposits (Kennecott Point) far to the southwest, it would appear a very broad area of northeastern Panthalassa experienced anoxic to euxinic bottom water conditions in the direct lead up to the end-Triassic mass extinction. Such a scenario implies expansion and shallowing of the oxygen minimum zone across a very broad area of northeastern Panthalassa, which potentially created a stressful environment for benthic metazoan communities. Studies of the pre-extinction interval from different sites across the globe are required to resolve the chronology and spatial distribution of processes that governed before the major environmental collapse that caused the ETE. Results from this study demonstrate that fluctuating anoxic and euxinic conditions could have been potentially responsible for reduced ecosystem stability before the onset of CAMP volcanism, at least at the regional scale.

Highlights

  • The end-Triassic mass extinction (ETE) is associated with a rise in CO2 due to eruptions of the Central Atlantic Magmatic Province (CAMP), and had a dramatic effect on the Modern Fauna, so an understanding of the conditions that led to the ETE has relevance to current rising CO2 levels

  • Our results demonstrate a development of oxygen restricted conditions, which would be stressful to most benthic metazoans established in shelf waters off northeastern Panthalassa prior to the ETE and preceding the earliest known CAMP volcanism

  • Our study demonstrates evidence supporting microbial mineralization during the phosphogenesis either in a direct or an indirect way, likely by polyphosphate-metabolizing bacteria, similar to those that mediate phosphogenesis in modern settings that fluctuate between oxic and euxininc/anoxic conditions[25,38]

Read more

Summary

Introduction

The end-Triassic mass extinction (ETE) is associated with a rise in CO2 due to eruptions of the Central Atlantic Magmatic Province (CAMP), and had a dramatic effect on the Modern Fauna, so an understanding of the conditions that led to the ETE has relevance to current rising CO2 levels. When combined with data from deeper water deposits (Kennecott Point) far to the southwest, it would appear a very broad area of northeastern Panthalassa experienced anoxic to euxinic bottom water conditions in the direct lead up to the end-Triassic mass extinction. Such a scenario implies expansion and shallowing of the oxygen minimum zone across a very broad area of northeastern Panthalassa, which potentially created a stressful environment for benthic metazoan communities. We present the first detailed study investigating the genesis of Upper Triassic phosphorite deposits from Williston Lake, British Columbia, which intriguingly occur directly before the ETE interval The Rhaetian Stage is marked by sea-level fall followed by a major transgression at the end of the Rhaetian coincident with an initial worldwide negative carbon isotope excursion24,31(Fig. 2)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call