Abstract

We derive a new upper bound on the rate distortion function for arbitrary memoryless sources, which is based on the relation between mutual information and minimum mean-square error discovered by Guo et al. This upper bound is in general tighter than the well known upper bound given by the rate distortion function of a Gaussian source with an equal variance found by Shannon and becomes tight for Gaussian sources. We evaluate the new upper bound for various source distributions and compare it to the Shannon lower and upper bound and to the rate distortion function calculated with the Blahut-Arimoto algorithm. This shows that the new upper bound is quite tight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.