Abstract

Multi-frequency P- and S-wave attenuation tomography models of Lake Van area (East Anatolia) have been obtained by estimating coda-normalized wave spectra of 3027 local earthquakes (2.0 < Mw < 7.1). The 6998 waveforms sampled from surface to a depth of 25 km, and were recorded from 2004 to 2020 at seven broadband, three-component digital seismic stations operated by Kandilli Observatory and Earthquake Research Institute (KOERI). We adopted a two-point ray-bending method to trace rays in a 3-D velocity model. We applied the coda normalization (CN) method to P- and S-wave data sets. We inverted the spectral data with a multiple resolution seismic attenuation (MuRAT) approach to obtain final tomographic models. On average, high (low) attenuation corresponds to low (high) velocity anomalies. The P- and S-wave attenuation contrasts delimit four well-known geological zones. High frequency-short wavelength attenuation contrasts constrain the 5-km-deep zone of interaction between magma and sediments within the Lake Van basin. Low frequency-long wavelength attenuation anomalies mark the central section of Lake Van between depths of 10 km and 20 km. This zone coincides with a rigid stable shear zone overlying a possible weak-ductile lower crust, interpreted as a detachment. Both low (5–15 km depth) and high attenuation (>20 km) anomalies mark the area of maximum seismic energy release during the Van event. Their contrast highlights the maximum seismogenetic depth above weak-warm, unstable materials. High attenuation in the SE-part of the Lake Van area coincides with a large hydrothermal and/or magmatic folding-overthrusting, interpreted as a suture-metamorphic complex between depths of 10–15 km. Other minor high-attenuation zones deeper than 5 km focus on complex shear zones in the area damaged by the Van event. The paired attenuation structure of the Lake Van area appears linked to multiple tectonic processes of crust-magma interaction better constrains subsurface segmentation structures and differential deformation types at upper-middle crustal depths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call