Abstract

Anuran survival is strongly affected by exposure to high environmental temperatures. However, their upper thermal tolerances vary between species and within developmental stages. The aims of this research were to measure the median lethal temperature (LT50) of three anuran developmental stages (Gosner stages 10, 20, and 25) at a constant thermal regime, and of developing embryos (stage 10) until they became tadpoles (stage 25) exposed to daily peaks of temperatures between 1000 and 1600. Four Colombian species (Emerald-eyed Treefrog, Hypsiboas crepitans (Wied-Neuwied, 1824); Tungara Frog, Engystomops pustulosus (Cope, 1864); Rivero’s Toad, Rhinella humboldti (Gallardo, 1965); Emerald Glassfrog, Espadarana prosoblepon (Boettger, 1892)) were used in these experiments. An ontogenetic increase was observed in the upper thermal tolerance from embryos to tadpoles for all species studied. In addition, developing embryos exposed to peak temperatures showed a LT50fairly close to the mean of the maximum habitat temperatures, particularly in H. crepitans and E. pustulosus that lay egg masses exposed directly to the sun. Environmental temperatures in the microhabitat of species studied showed values remarkably higher than their experimental LT50. Therefore, we postulate that rapid increases in environmental temperatures, as result of global or local changes, might be a critical factor for anuran survival, mainly during the embryonic stages when they are more sensitive to temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call