Abstract
In this paper, we give sufficient conditions for the upper semicontinuity property of the solution mapping of a parametric generalized vector quasiequilibrium problem with mixed relations and moving cones. The main result is proven under the assumption that moving cones have local openness/local closedness properties and set-valued maps are cone-semicontinuous in a sense weaker than the usual sense of semicontinuity. The nonemptiness and the compactness of the solution set are also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.