Abstract

Calix[4]arene derivatives, blocked in the cone conformation and functionalized with two to four guanidinium units at the upper rim were synthesized and investigated as catalysts in the cleavage of the RNA model compound 2-hydroxypropyl p-nitrophenyl phosphate. When compared with the behavior of a monofunctional model compound, the catalytic superiority of the calix[4]arene derivatives points to a high level of cooperation between catalytic groups. Combination of acidity measurements with the pH dependence of catalytic rates unequivocally shows that a necessary requisite for effective catalysis is the simultaneous presence, on the same molecular framework, of a neutral guanidine acting as a general base and a protonated guanidine acting as an electrophilic activator. The additional guanidinium (guanidine) group in the diprotonated (monoprotonated) trifunctional calix[4]arene acts as a more or less innocent spectator. This is not the case with the tetrasubstituted calix[4]arene, whose mono-, di-, and triprotonated forms are slightly less effective than the corresponding di- and triguanidinocalix[4]arene derivatives, most likely on account of a steric interference with HPNP caused by overcrowding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.