Abstract
We introduce a definition of upper Lyapunov exponent for quantum systems in the Heisenberg representation, and apply it to parametric quantum oscillators. We provide a simple proof that the upper quantum Lyapunov exponent ranges from zero to a positive value, as the parameters range from the classical system’s region of stability to the instability region. It is also proved that in the instability region the parametric quantum oscillator satisfies the discrete quantum Anosov relations defined by Emch, Narnhofer, Sewell, and Thirring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.