Abstract

Francis turbines with medium or high specific speeds may experience a particular type of instability in the upper part load in which the precessing vortex has an elliptical shape. The occurrence of the upper part-load instability (UPLI) is accompanied by large-amplitude pressure fluctuations at a distinct frequency between 2 and 4 times the runner rotational speed. This paper experimentally investigates UPLI for a reduced-scale Francis turbine. To investigate the causal factors of this instability, draft tube pressure measurements, particle image velocimetry, and high-speed flow visualizations have been performed at several operating points under cavitation and cavitation-free conditions. It is shown for the first time that for an operating point within the UPLI range, the vortex always features a circular section in cavitation-free conditions, which is preserved even after the initial appearance of cavitation. It is only below a certain Thoma number that the vortex section turns into an ellipse and shows an abrupt increase in pressure fluctuations. Analysis of the phase-averaged velocity fields reveals that a concentrated vortex with a large precession radius is a prerequisite for UPLI, while the instantaneous velocity fields clearly illustrate the asymmetric velocity distribution around the elliptical vortex. The existence of a breathing mode and the intermittent formation of two side vortices along the elliptical vortex rope are also evidenced by high-speed flow visualizations. These results provide a much deeper insight into the flow structures that favor the development of UPLI and help delimit its thresholds to higher precision, and thus, prevent its occurrence during turbine operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.