Abstract
The origin of the widespread volcanism at the Leizhou–Hainan (Leiqiong) region in the Southern China remains obscure. We take advantage of the highly active seismicity and dense seismic networks surrounding this region to investigate its upper mantle and Mantle Transition Zone (MTZ) structure. Over 5000 P-wave waveforms whose raypaths bottom at depths around the MTZ are collected, and traveltimes of their first arrivals are hand-picked. By matching the traveltime curve variation over the epicentral distance range from 10° to 35°, we first construct a 1-D upper mantle and MTZ velocity structure for the region. This initial model is then refined by forward modeling, in which the observed triplicated waveforms from selected earthquakes are compared with the synthetic seismograms with varying velocity structure. In our preferred model for Leiqiong, the P-wave velocities deeper than 200km at the upper mantle are 0.8–1.2% lower than the IASP91, and 0.6% slower in the MTZ, while the top and bottom boundaries of the MTZ depresses 12km and slightly uplifted, respectively, compared to the global averages. This model provides independent constraints on the structure beneath Leiqiong, suggesting a thermal anomaly within the MTZ and a lower mantle origin for the volcanism seen in this region.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.