Abstract
We consider Sinai’s walk in i.i.d. random scenery and focus our attention on a conjecture of Révész concerning the upper limits of Sinai’s walk in random scenery when the scenery is bounded from above. A close study of the competition between the concentration property for Sinai’s walk and negative values for the scenery enables us to prove that the conjecture is true if the scenery has “thin” negative tails and is false otherwise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.