Abstract
Abstract The recent discovery of an earth-like planet around Proxima Centauri has drawn much attention to this star and its environment. We performed a series of observations of Proxima Centauri using Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), the planet-finder instrument installed at the European Southern Observatory (ESO) Very Large Telescope (VLT) UT3, using its near-infrared modules, InfraRed Dual-band Imager and Spectrograph (IRDIS) and IFS. No planet was detected directly, but we set upper limits on the mass up to 7 au by exploiting the AMES-COND models. Our IFS observations reveal that no planet more massive than ∼6–7 MJup can be present within 1 au. The dual-band imaging camera IRDIS also enables us to probe larger separations than other techniques such as radial velocity or astrometry. We obtained mass limits of the order of 4 MJup at separations of 2 au or larger, representing the most stringent mass limits at separations larger than 5 au available at the moment. We also made an attempt to estimate the radius of possible planets around Proxima using the reflected light. Since the residual noise for the observations is dominated by photon noise and thermal background, longer exposures in good observing conditions could improve the achievable contrast limit further.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Monthly Notices of the Royal Astronomical Society: Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.