Abstract

In very high energy scattering events production of multiple Higgs and electroweak gauge bosons becomes possible. Indeed the perturbative cross section for these processes grows with increasing energy, eventually violating perturbative unitarity. In addition to perturbative unitarity we also examine constraints on high multiplicity processes arising from experimentally measured quantities. These include the shape of the Z-peak and upper limits on scattering cross sections of cosmic rays. We find that the rate of high multiplicity electroweak processes will exceed these upper limits at energies not significantly above what can be currently tested experimentally. This leaves two options: 1) The electroweak sector becomes truly non-perturbative in this regime or 2) Additional physics beyond the Standard Model is needed. In both cases novel physics phenomena must set in before these energies are reached. Based on the measured Higgs mass we estimate the critical energy to be in the range of $10^3$ TeV but we also point out that it can potentially be significantly less than that.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call