Abstract

The historic detection by the Kamiokande-II collaboration1 and the IMB collaboration2 of neutrinos from the Large Magellanic Cloud (LMC) supernova provides the first opportunity to determine the mass, , of the electron neutrino from astronomical observations. Here we show that , is less than 11 eV, provided only that propagation effects have not conspired to sharpen, by more than a factor of two the narrow pulse-width of neutrinos, observed by the Kamiokande-II collaboration from the LMC supernova. This result improves on the laboratory limit on and confirms the view that electron neutrinos do not constitute the major component of the matter density of the Universe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.