Abstract

The purpose of the current study was to determine the extent to which "sensory dominance" exists in right-handers with respect to the utilization of proprioceptive versus visual feedback. Thirteen right-handed adults performed two target-matching tasks using instrumented manipulanda. In the proprioceptive matching task, the left or right elbow of blindfolded subjects was passively extended by a torque motor system to a target position and held for 3 s before being returned to the start position. The target angle was then matched with either the ipsilateral or contralateral arm. In the second task, visual matching, circular targets were briefly projected to either side of a visual fixation point located in front of the subject. Subjects then matched the target positions with a laser pointer by moving either the ipsilateral or contralateral arm. Overall, marked arm differences in accuracy were seen based on the type of sensory feedback used for target presentation. For the proprioceptive matching task errors were smaller for the nonpreferred left arm, whereas during the visual matching task smaller errors were found for the preferred right arm. These results suggest a left arm/right hemisphere advantage for proprioceptive feedback processing and a right arm/left hemisphere advantage for visual information processing. Such asymmetries may reflect fundamental differences between the two arm/hemisphere systems during the performance of bimanual tasks where the preferred arm requires visual guidance to manipulate an object, whereas the nonpreferred stabilizes that object on the basis of proprioceptive feedback.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call