Abstract

We present a three‐dimensional velocity model of the upper crust around the central volcano of the Lucky Strike Segment, Mid‐Atlantic Ridge. The model, constructed from a 3‐D array of air gun shots (37.5 m spacing along line and 100 m between lines) to ocean bottom seismometers fired during a 3‐D seismic reflection survey, shows an off‐axis velocity increase (∼1 km/s), a low‐velocity region within the median valley, and a low‐velocity anomaly underneath the Lucky Strike volcano. Our observations indicate a porosity decrease of 1%–9% (corresponding to a velocity increase of ∼0.5–1 km/s) over a distance of 8 km from the ridge axis (∼0.7 Ma) and a porosity decrease of 4%–11% (corresponding to a velocity increase of ∼2 km/s) between a depth of 0.5 and 1.75 km below seafloor. A sinusoidal variation in the traveltime residuals indicates the presence of azimuthal anisotropy with cracks aligned approximately along the ridge axis. We favor an interpretation in which upper crustal porosities are created by a combination of magmatic accretion (lava–sheeted dike boundary) and active extension (faults, fractures, and fissures). The porosity variation with depth probably depends on pore space collapse, hydrothermal alteration, and a change of stress accommodation. The off‐axis porosities are possibly influenced by both hydrothermal precipitation and the aging of the crust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.