Abstract
AbstractA tectonic window into the upper 2,000 m of oceanic crust generated at the superfast spreading (∼142 mm/yr) southern East Pacific Rise exposes a continuous layered structure of basaltic lavas and sheeted dikes over gabbroic rocks. This relatively simple structure is in accord with expectations for crustal accretion at a very fast spreading rate and high magma budget where magmatic construction keeps pace with plate separation. Detailed observations show that basaltic lava flows dip progressively more steeply inward (toward the spreading axis where they were erupted). Underlying sheeted dikes are faulted and tectonically rotated to dip steeply outward. These structures are interpreted in terms of subsidence beneath the axis of the southern East Pacific Rise during crustal construction that allowed the lava unit to thicken to >400 m without creating comparable relief at the spreading center. Transitional units above and below the sheeted dike complex show that the thickness of upper crustal rock units is modified by tectonic and intrusive processes during accretion. The crustal structure shows that even approaching the superfast spreading end‐member of seafloor spreading, crustal accretion involves dramatic tectonic processes that are not obvious from the surface geology of spreading centers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.