Abstract

This paper applies nonlinear three‐dimensional travel time tomography to refraction data recorded during the 1998 Seismic Hazards Investigation in Puget Sound (SHIPS) to derive the first large‐scale, high‐resolution upper crustal velocity model for southwestern British Columbia. A minimum structure P wave velocity model is constructed using 175,000 first arrival travel times picked from data recorded by 58 temporary onshore stations. The model details forearc crustal structures related to terrane accretion and subsequent basin formation to a depth of about 10 km. The Metchosin igneous complex (correlative with the Eocene Crescent‐Siletz Terrane in Washington) is imaged as a laterally extensive WNW trending high‐velocity anomaly underlying southernmost Vancouver Island and much of the Strait of Juan du Fuca. Northeast of the Strait of Georgia, the southwesterly dip of the contact between the Wrangellia terrane rocks of Vancouver Island and the Coast Plutonic Complex suggests Wrangellia rocks are down‐faulted against the plutonic complex. At the southwestern end of the Strait of Juan de Fuca, the 50 km long WNW trending Clallam basin has a maximum thickness of 5–6 km. Near the eastern end of the Strait of Juan de Fuca, Port Townsend basin has an inferred thickness of approximately 4–5 km. The southern end of the 9 km thick Georgia basin is bounded by a high‐velocity basement ridge. Beneath the Strait of Georgia, clusters of well‐located earthquakes have a prominent NW trend and coincide spatially with rapid lateral velocity changes. Clusters of microearthquakes there are associated with the intersection of several east trending structural highs within this NW trend.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.