Abstract

The upper critical field H(c2) of purple bronze Li0:9Mo6O17 is found to exhibit a large anisotropy, in quantitative agreement with that expected from the observed electrical resistivity anisotropy. With the field aligned along the most conducting axis, H(c2) increases monotonically with decreasing temperature to a value 5 times larger than the estimated paramagnetic pair-breaking field. Theories for the enhancement of H(c2) invoking spin-orbit scattering or strong-coupling superconductivity are shown to be inadequate in explaining the observed behavior, suggesting that the pairing state in Li0:9Mo6O17 is unconventional and possibly spin triplet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.