Abstract
The structure, upper critical field, and Raman spectrum of epitaxial MgB2 thin films irradiated by 300 keV O2+ ions have been investigated. Lattice parameter c expands after irradiation. There is a significant increase in upper critical field in the moderately irradiated films, while the critical temperature is reduced slightly. The values of critical field at zero temperature exhibit a maximum for samples with a moderate irradiation level for the applied magnetic field both perpendicular and parallel to the film surface. The temperature dependence of the anisotropy parameter, which is defined as the ratio of the upper critical field with the field parallel to the film surface and perpendicular to the film surface, reveals that oxygen ion irradiation mainly affects the σ band at a low irradiation level. With increasing irradiation level, π band scattering is strongly enhanced, and finally both bands are in the dirty limit. A broad peak centered around 570 cm−1 is observed in the Raman spectrum of the unirradiated films, and the peak position has a visible redshift in the irradiated samples. In particular, high-frequency spectral structures appear and become dominant, while the E2g broad band diminishes gradually with increasing irradiation fluence. The results are discussed by considering the disorder-induced change in carrier scattering within and between the σ and π bands and a violation of the Raman selection rules due to oxygen ion irradiation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.