Abstract

The 331 m long core from the Mona-1 well in the Danish North Sea spans almost the entire Upper Cretaceous Chalk Group but only about 10% of Late Cretaceous time is represented. The succession comprises 14 facies representing pelagic deposition, turbidity flow, and mass-transport processes, including mudflow, debris flow, and slumping. Pelagic deposits vary mainly in terms of the concentration of siliciclastic material, the trace-fossil assemblage, and the presence or absence of primary sedimentary structures. Pelagic sedimentation was probably punctuated by the deposition of thin turbidites, and the resultant deposits were thoroughly bioturbated if deposited during normal oxygenation at the sea floor. Periodic benthic dysoxia resulted in the preservation of primary structures, as represented by laminated chalk which consists of thin pelagic laminae alternating with thin turbidites. In addition to the thin turbidites in the laminated chalk, four different turbidite facies are interpreted as representing high- to low-energy flows. Clast-supported chalk conglomerates have previously not been differentiated from other turbidites, but are here interpreted to be directly related to the down-slope evolution of debris flows. Debris flows are represented by matrix-supported conglomerates, which form one of the most common facies in the succession. High-concentration, gravity-driven suspension flows passed into dilute visco-plastic flows during the final stages of deposition and resulted in the deposition of structureless chalks. Limited shear deformation produced distinct quasi-facies from which the precursor facies can be deduced, whereas intense or continued shear deformation produced a shear-banded quasi-facies from which the precursor facies cannot be deduced in all cases. A series of major slump packages (14–18 in total) are interpreted, forming over 40% of the succession; debrites appear to be the most common precursor facies involved in slumping. The vertical succession of facies records an earliest Cenomanian facies shift from dominantly siliciclastic to chalk deposition. The Cenomanian – late Campanian period was dominated by erosion or sediment by-pass with minor associated mass-transport deposits preserved. Basin filling by pelagites and turbidites prevailed in the late Campanian, whereas Maastrichtian pelagic deposition was interrupted by increasingly frequent and voluminous mass-transport events.

Highlights

  • The Upper Cretaceous Chalk Group has long been the subject of research concentrating on stratigraphy, palaeontology and geochemistry

  • The aim of this study is to present detailed descriptions and interpretations of the chalk facies present, and to discuss facies associations and the general Late Cretaceous depositional history in the Mona Ridge area

  • The Mona-1 area was subjected to continuous or pulsed erosion due to uplift of the Mona Ridge or subsidence in the Karl Basin

Read more

Summary

Introduction

The Upper Cretaceous Chalk Group has long been the subject of research concentrating on stratigraphy, palaeontology and geochemistry. A variety of interpretive facies and conceptual depositional models for the North Sea Chalk Group have been proposed (Nygaard et al 1983; Brewster et al 1986; Kennedy 1987a, b; Nielsen et al 1990; Sikora et al 1998; Bramwell et al 1999). Such models may prove predictive when based on a solid foundation of empirical data and/or numerous well-documented cases.

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.