Abstract

In the early 1990s, A. Bezdek and W. Kuperberg used a relatively simple argument to show a surprising result: The maximum packing density of circular cylinders of infinite length in $\mathbb{R}^3$ is exactly $\pi/\sqrt{12}$, the planar packing density of the circle. This paper modifies their method to prove a bound on the packing density of finite length circular cylinders. In fact, the maximum packing density for unit radius cylinders of length $t$ in $\mathbb{R}^3$ is bounded above by $\pi/\sqrt{12} + 10/t$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.