Abstract
AbstractWe give upper bounds on the modulus of the values at s = 1 of Artin L-functions of abelian extensions unramified at all the infinite places.We also explain how we can compute better upper bounds and explain how useful such computed bounds are when dealing with class number problems for CM-fields. For example, we will reduce the determination of all the non-abelian normal CM-fields of degree 24 with Galois group SL2(F3) (the special linear group over the finite field with three elements) which have class number one to the computation of the class numbers of 23 such CM-fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.