Abstract

Abstract Discrete models of elastoplastic structures are considered, Piecewise linear yield conditions and hardening rules are assumed. On this basis, a deformation bounding method resting on the use of fictitious loads as proposed first by Ponter [6, 7], is developed for situations in which: (a) the geometry changes affect the equilibrium equations but their effects may be expressed by bilinear terms in the pre-existing stresses and additional displacements (“second-order geometric effects”); (b) inertia and viscous damping forces play a significant role. Comparisons are made with different bounding methods previously established by the author [3,4], for the same classes of structures and mechanical situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.