Abstract

New upper bounds for the solution of the discrete algebraic Lyapunov equation (DALE) P= APA T+ Q are presented. The only restriction on their applicability is that A be stable; there are no restrictions on the singular values of A nor on the diagonalizability of A. The new bounds relate the size of P to the radius of stability of A. The upper bounds are computable when the large dimension of A make direct solution of the DALE impossible. The new bounds are shown to reflect the dependence of P on A better than previously known upper bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.