Abstract

Let [Formula: see text] be a smooth projective algebraic curve of genus [Formula: see text], over the finite field [Formula: see text]. A classical result of H. Martens states that the Brill–Noether locus of line bundles [Formula: see text] in [Formula: see text] with [Formula: see text] and [Formula: see text] is of dimension at most [Formula: see text], under conditions that hold when such an [Formula: see text] is both effective and special. We show that the number of such [Formula: see text] that are rational over [Formula: see text] is bounded above by [Formula: see text], with an explicit constant [Formula: see text] that grows exponentially with [Formula: see text]. Our proof uses the Weil estimates for function fields, and is independent of Martens’ theorem. We apply this bound to give a precise lower bound of the form [Formula: see text] for the probability that a line bundle in [Formula: see text] is base point free. This gives an effective version over finite fields of the usual statement that a general line bundle of degree [Formula: see text] is base point free. This is applicable to the author’s work on fast Jacobian group arithmetic for typical divisors on curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.