Abstract

A celebrated unresolved conjecture of Erdös and Hajnal (see Discrete Appl Math 25 (1989), 37–52) states that for every undirected graph H, there exists , such that every graph on n vertices which does not contain H as an induced subgraph contains either a clique or an independent set of size at least . In (Combinatorica (2001), 155–170), Alon et al. proved that this conjecture was equivalent to a similar conjecture about tournaments. In the directed version of the conjecture cliques and stable sets are replaced by transitive subtournaments. For a fixed undirected graph H, define to be the supremum of all ε for which the following holds: for some n0 and every every undirected graph with vertices not containing H as an induced subgraph has a clique or independent set of size at least . The analogous definition holds if H is a tournament. We call the Erdös–Hajnal coefficient of H. The Erdös–Hajnal conjecture is true if and only if for every H. We prove in this article that: the Erdös–Hajnal coefficient of every graph H is at most , there exists such that the Erdös–Hajnal coefficient of almost every tournament T on k vertices is at most , i.e. the proportion of tournaments on k vertices with the coefficient exceeding goes to 0 as k goes to infinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.