Abstract

Assuming iterative decoding for binary erasure channels (BECs), a novel tree-based technique for upper bounding the bit error rates (BERs) of arbitrary, finite low-density parity-check (LDPC) codes is provided and the resulting bound can be evaluated for all operating erasure probabilities, including both the waterfall and the error floor regions. This upper bound can also be viewed as a narrowing search of stopping sets, which is an approach different from the stopping set enumeration used for lower bounding the error floor. When combined with optimal leaf-finding modules, this upper bound is guaranteed to be tight in terms of the asymptotic order. The Boolean framework proposed herein further admits a composite search for even tighter results. For comparison, a refinement of the algorithm is capable of exhausting all stopping sets of size ? 13 for irregular LDPC codes of length n ? 500, which requires ([see pdf file in the above equation]) ? 1.67 × 1025 trials if a brute force approach is taken. These experiments indicate that this upper bound can be used both as an analytical tool and as a deterministic worst-performance (error floor) guarantee, the latter of which is crucial to optimizing LDPC codes for extremely low BER applications, e.g., optical/satellite communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.