Abstract

This paper proposed a theoretical model of seismic rotational stability of gravity retaining wall, using the multi-block upper-bound method. In this model, the cohesionless backfill in the failure zone was meshed into an infinite number of rigid blocks parallel to planar failure surface, in order to establish the energy dissipation equation of the wall-soil system based on the kinematically admissible velocity field. The critical acceleration due to earthquake-induced pseudo-static inertial force was derived through the energy dissipation equation. The model explicitly took account of the height, shape, and unit weight of the retaining wall, the properties of the backfill soil (i.e., unit weight and angle of shearing resistance) and the friction angle of the wall-soil interface. The proposed upper-bound solutions are consistent with those obtained by the limit equilibrium theory by Zeng and Steedman (2000), whereas in this method the vector of earth pressure need not to be assumed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.