Abstract

Abstract When radiative transfer is the dominant mechanism cooling the lower thermosphere of Jupiter, CH4, (7.7μ) is probably the dominant cooling agent; however, its low turbopause mixing ratio (10−4, as compared to 10−3 in the lower atmosphere) contributes to a cooling rate small (≲10−4) compared to CO2 on Mars. This results in a Javian mesopause density ∼10 times the Martian density or ∼1014 cm−3, if radiative cooling is the primary heat transfer mechanism in the lower thermosphere. An alternate method for transporting heat is convection (forced or free), which apparently emerges as the dominant transport mechanism as the effective eddy diffusion coefficient (Kv) approaches values similar to those anticipated in the earth's lower thermosphere (106 cm see−1). Over the solar cycle, with a high heating efficiency (0.86), the temperature rise above the turbopause ranges between 19 and 53K for weak convective activity (Kv=105 cm see−1) and 7–19K for strong activity (107 cm see−1), suggesting that satellite ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.