Abstract
Abstract With the advent of the online social network and advancement of technology, people get connected and interact on social network. To better understand the behavior of users on social network, we need to mine the interactions of users and their demographic data. Companies with less or no expertise in mining would need to share this data with the companies of expertise for mining purposes. The major challenge in sharing the social network data is maintaining the individual privacy on social network while retaining the implicit knowledge embedded in the social network. Thus, there is a need of anonymizing the social network data before sharing it to the third-party. The current study proposes to use upper approximation concept of rough sets for developing a solution for privacy preserving social network graph publishing. The proposed algorithm is capable of preserving the privacy of graph structure while simultaneously maintaining the utility or value that can be generated from the graph structure. The proposed algorithm is validated by showing its effectiveness on several graph mining tasks like clustering, classification, and PageRank computation. The set of experiments were conducted on four standard datasets, and the results of the study suggest that the proposed algorithm would maintain the both the privacy of individuals and the accuracy of the graph mining tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.