Abstract

For a conformally compact manifold that is hyperbolic near infinity and of dimension n + 1, we complete the proof of the optimal O(r n+1) upper bound on the resonance counting function, correcting a mistake in the existing literature. In the case of a compactly supported perturbation of a hyperbolic manifold, we establish a Poisson formula expressing the regularized wave trace as a sum over scattering resonances. This leads to an r n+1 lower bound on the counting function for scattering poles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.