Abstract
In this paper, we consider a viscoelastic wave equation with dynamical boundary conditions. Under certain assumptions, we give the upper and lower bounds for the blow-up time according to the exponent numbers m and p of the nonlinear boundary damping term and the source term. For the case 2 ≤ m < p, we extend the earlier exponentially growth result in Gerbi and Said-Houari (Adv. Non-linear Analysis, 2013) to a blow-up in finite time result with positive initial energy and get the upper bound for the blow-up time. For the case m = 2, by using the concavity method, we prove a finite time blow-up result and get the upper bound for the blow-up time, which is a supplement to Gerbi and Said-Houari (Adv. Nonlinear Analysis, 2013). Moreover, for the case m ≥ 2, under certain conditions on the data, we give a lower bound for the blow-up time when blow-up occurs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.