Abstract

User profiling has very important applications for many downstream tasks, such as recommender system, behavior prediction and market strategy. Most existing methods only focus on modeling user profiles of one social network with plenty of data. However, user profiles are difficult to acquire, especially when the data is scarce. Modeling user profiles under such conditions often leads to poor performance. Fortunately, we observed that not only user attributes but also user relationships are useful for user profiling and benefit the results. Meanwhile, similar users have similar behavior in different social networks. Finding user dependencies between social networks will help to infer user profiles. Motivated by such observations, in this paper, we for the first time propose to study the user profiling problem from the transfer learning perspective. We design an efficient User Profile transferring acrOss Networks (UPON) framework, which transfers knowledge of user relationship from one social network with plenty of data to facilitate the user profiling on the other social network with scarce data. In UPON, we first design a novel graph convolutional networks based characteristic-aware domain attention model (GCN-CDAM) to find user dependencies within and between domains (referring to social networks). We then design a dual-domain weighted adversarial learning method to solve the domain shift problem existing in the transferring procedure. Experimental results on Twitter-Foursquare dataset demonstrate that UPON outperforms the state-of-the-art models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call