Abstract
The number of simultaneous users (or user capacity) supportable on the uplink of a multiple-macrocell code division multiple-access (CDMA) system with multiple hotspot microcells embedded within is studied. These microcells operate on the same frequency as the macrocells and are installed in regions of high user demand. It is shown that the user capacity depends on how the users are distributed among cells, and that the maximum (called the attainable capacity) occurs when all cells serve roughly the same number of users. The approach builds on a two-cell analysis published previously, for a single microcell embedded in a single macrocell. First, this analysis is expanded upon to estimate the attainable capacity for M macrocells, where the center one contains L microcells. Then the case in which L microcells are distributed randomly among the M macrocells is analyzed. In each case, the formula for attainable capacity is very simple and highly accurate (as demonstrated via simulations) up to reasonably high values of L. For example, with L microcells distributed among M macrocells, the analysis is accurate at least up to eight microcells per macrocell. The analysis and results are general with respect to cell geometries, propagation parameters, and other variables of the two-tier CDMA system
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.