Abstract

Massive multiple-input multiple-output (mMIMO) is emerging as a cornerstone technology for fifth-generation (5G) communications. It promises to scale up the performance of the conventional communication systems by growing the number of antennas at the base station side. This paper proposes a decentralized, scalable, and energy-efficient radio resource allocation method tailored for the uplink of the upcoming 5G air interface, based on the mMIMO physical layer. The proposed solution elaborates on a game-theoretical approach, which aims at maximizing the energy efficiency of mobile terminals, while guaranteeing the respect of average data rates and power consumptions constraints. This formulation leads to a low-complexity, iterative, and distributed algorithm, which considers (just to mention few relevant issues) the impact of channel time selectivity, delayed feedback from the base station, and physical-layer details of the selected communication technology. An extensive simulation campaign, considering a long-term evolution-advanced-based multicellular system based on mMIMO, is used to evaluate the benefits of the proposed technique. By calculating energy efficiency, user and peak data rates, spectral efficiency, outage probability, and other minor performance indexes, the reported results clearly demonstrate the performance gain that the designed solution offers with respect to baseline strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.