Abstract
Two-tier femtocell networks, in which a large number of femto base stations (BSs) are deployed within a region overlapping with a macrocell, can provide an economical means of increasing user capacity and coverage. Given that femto BSs may be deployed with no cell planning, cross-tier interference generated from a number of macrocells and femtocells can cause severe problems. In particular, a macro mobile station (MS) that transmits uplink data may generate severe interference with adjacent femtocells, which causes performance degradation. In order to solve these problems, two novel resource allocation schemes, optimization and heuristic, are proposed, which efficiently reduce uplink interference in two-tier femtocell networks. Simulation results at the system level verify that both proposed schemes can improve the average capacity of the femtocells, but the heuristic scheme outperforms the optimization scheme in terms of computational complexity.
Highlights
With the increasing popularity of high data rate wireless services, a number of communication techniques have been proposed to cope with the increase in mobile traffic
One simple yet powerful means of increasing the capacity of wireless networks involves decreasing the size of the cell because a small cell is perfectly adequate for providing high data rate services for multiple users through more efficient wireless environments
We consider a two-tier femtocell network where K femto base stations (BSs) are uniformly located in the coverage of a macro BS
Summary
With the increasing popularity of high data rate wireless services, a number of communication techniques have been proposed to cope with the increase in mobile traffic. One simple yet powerful means of increasing the capacity of wireless networks involves decreasing the size of the cell because a small cell is perfectly adequate for providing high data rate services for multiple users through more efficient wireless environments. A mobile station (MS) of a macro BS that transmits with a high power or is located near the femto BS may cause severe uplink interference with neighboring femtocells, and the capacity of the femtocells can deteriorate. We present efficient resource allocation algorithms that can reduce uplink interference in two-tier femtocell networks. To this end, we formulate an optimization scheme using integer programming (IP), but this turns out to be somewhat impractical due to its complexity. In order to provide a practical solution, we propose a heuristic scheme with low complexity in which femtocells and a macrocell perform resource allocation cooperatively
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.