Abstract

Pipelines are commonly buried, and can buckle upwards when heated if there is insufficient soil uplift capacity. Interface tension beneath the buried pipe significantly influences the uplift capacity at shallow embedments. Conventional design approaches, which consider either zero or unlimited interface tension, do not assess and quantify the effect of interface tension on uplift capacity. The present study bridges the gap between conventional “no tension” and “full tension” capacities. Mobilisation of interface tension is governed by seepage forces which in turn directly control the formation of a gap beneath the pipe. A large deformation finite element approach, which simulates this phenomenon of gap formation using a thin layer of gap elements below the pipe, is adopted to study the soil response for various cases of uplift velocity, embedment and soil weight. The enhancement in undrained shear strength of soil at higher uplift velocities due to strain rate effects has also been considered. The interface tension mobilised at these different velocities and embedments varies systematically in a way that is expressed by modifying Hvorslev's intake factors. The proposed expressions may be used with the existing methodologies to assess pipe stability during operation, demonstrated here through a design example.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call