Abstract

AbstractSerpentinized mantle peridotites form prominent mountains, including the highest elevations of the Troodos ophiolite in Cyprus (Mount Olympus, 1,952 m), but to date, only qualitative mechanisms have been proposed to explain the uplift of mantle rocks to high altitudes. Serpentinization reactions between mantle rocks and water result in profound changes to the rheology and physical properties of peridotites including significant density reduction (∼900 kg/m3). Field observations, density measurements, and isostatic uplift and erosional modeling provide new constraints on the contribution of serpentinization to the uplift of the Troodos Mantle Sequence. Different serpentinization styles have resulted in two distinct serpentinite domains with contrasting densities. Our modeling shows that the Troodos Mountains can form within the geologically constrained uplift time frame (∼5.5 Myr) exclusively through partial serpentinization reactions. We interpret the serpentinite domains as two nested diapirs that formed due to different extents of serpentinization and density reduction. Differential uplift and exhumation have decoupled the two serpentinite diapirs from the originally overlying ocean crustal rocks. Once at high altitudes the incursion of meteoric water reinforced coupled deformation‐alteration‐recrystallization processes in the shallow subsurface producing a localized low density completely serpentinized diapir. A second decoupling between the contrasting serpentinite diapirs results in localized differential uplift and exhumation, extruding deep materials to the east of Mount Olympus. Application of our modeling to other serpentinite massifs (e.g., St. Peter and St. Paul Rocks, New Idria, California) highlights the contribution of isostasy to the uplift of serpentinized massifs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call