Abstract

Abstract. While thermochronological studies have constrained the landscape evolution of several of the crustal blocks of West and East Antarctica, the tectono-thermal evolution of the Ellsworth Mountains remains relatively poorly constrained. These mountains are among the crustal blocks that comprise West Antarctica and exhibit an exceptionally well-preserved Palaeozoic sedimentary sequence. Despite the seminal contribution of Fitzgerald and Stump (1991), who suggested an Early Cretaceous uplift event for the Ellsworth Mountains, further thermochronological studies are required to improve the current understanding of the landscape evolution of this mountain chain. We present new zircon (U–Th) / He (ZHe) ages, which provide insights into the landscape evolution of the Ellsworth Mountains. The ZHe ages collected from near the base and the top of the sequence suggest that these rocks underwent burial reheating after deposition. A cooling event is recorded during the Jurassic–Early Cretaceous, which we interpret as representing exhumation in response to rock uplift of the Ellsworth Mountains. Moreover, our results show that while ZHe ages at the base of the sequence are fully reset, towards the top ZHe ages are partially reset. Uplift and exhumation of the Ellsworth Mountains during the Jurassic–Early Cretaceous was contemporaneous with the rotation and translation of this crustal block with respect to East Antarctica and possibly the Antarctic Peninsula. Furthermore, this period is characterized by widespread extension associated with the disassembly and breakup of Gondwana, with the Ellsworth Mountains playing a key role in the opening of the far southern Atlantic. Based on these results, we suggest that uplift of the Ellsworth Mountains during the disassembly of Gondwana provides additional evidence for major rearrangement of the crustal blocks between the South American, African, Australian and Antarctic plates. Finally, uplift of the Ellsworth Mountains commenced during the Jurassic, which predates the Early Cretaceous uplift of the Transantarctic Mountains. We suggest that the rift-related exhumation of the Ellsworth Mountains occurred throughout two events: (i) a Jurassic uplift associated with the disassembly of southwestern Gondwana and (ii) an Early Cretaceous uplift related with the separation between Antarctica and Australia, which is also recorded in the Transantarctic Mountains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.