Abstract

In addition to the mycotoxin swainsonine, the locoweed endophytic fungus Alternaria oxytropis (Pleosporaceae) also produces a series of rarely reported, highly oxygenated bicyclic guaiane sesquiterpenoids. Few investigations on the electrospray tandem mass fragmentation pattern of this sesquiterpenoid have been reported. We aimed to analyze and detect new guaiane sesquiterpenoid analogues from crude extracts of the locoweed endophytic fungus A. oxytropis by UPLC-Q-TOF-MS/MS experiments. Oxytropiols A-J (1-10) and the extract of the locoweed endophytic fungus A. oxytropis were analyzed by UPLC-Q-TOF-MS/MS in positive mode. Typical neutral losses, McLafferty rearrangement, 1,2-rearrangement, and 1,3-rearrangement were considered to be the main fragmentation patterns for the [M + H]+ /[M + Na]+ ions of 1-10 by UPLC-Q-TOF-MS/MS experiments, and possible fragmentation pathways of 1-10 were suggested. A unique and undescribed analogue named oxytropiol K (11) was found in the extract based on UPLC-Q-TOF-MS/MS analysis. Compound 11 was isolated and elucidated by NMR spectrometry, and its UPLC-Q-TOF-MS/MS analysis was consistent with the fragmentation pathways of 1-10. The results further support that UPLC-Q-TOF-MS/MS is a powerful and sensitive tool for the characterization of known compounds (dereplication) and the detection of new analogues from crude extracts and imply that the locoweed endophytic fungus A. oxytropis, with few chemical investigations, is an important resource for undescribed metabolites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call