Abstract

The purpose of the present study was to compare metabolites from formalin-fixed and paraffin-embedded (FFPE) pancreatic tissue blocks with those identified in optimal cutting temperature (OCT)-embedded pancreatic tissue blocks. Thus, ultra-performance liquid chromatograph-mass spectrometry/mass spectrometry-based metabolic profiling was performed in paired frozen (n=13) and FFPE (n=13) human pancreatic adenocarcinoma tissue samples, in addition to their benign counterparts. A total of 206 metabolites were identified in both OCT-embedded and FFPE tissue samples. The method feasibility was confirmed through reproducibility and a consistency assessment. Partial least-squares discriminant analysis and heatmap analysis reliably distinguished tumor and normal tissue phenotypes. The expression of 10 compounds, including N-acetylaspartate and creatinine, was significantly different in both OCT-embedded and FFPE tumor samples. These ten compounds may be viable candidate biomarkers of malignant pancreatic tissues. The super-categories to which they belonged exhibited no significant differences between FFPE and OCT-embedded samples. Furthermore, purine, arginine and proline, and pyrimidine metabolism used a shared pathway found in both OCT-embedded and FFPE tissue samples. These results supported the notion that metabolomic data acquired from FFPE pancreatic cancer specimens are reliable for use in retrospective and clinical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.