Abstract

Ultra-performance liquid chromatography (UPLC) in reversed-phase (RP), ion pair (IP) and hydrophilic interaction chromatography (HILIC) has been investigated for the separation of imidazolium-based ionic liquid (IL) cations. Among the three stationary phases (i.e., C18, C8 and phenyl) studied under RP conditions the phenyl phase provided much stronger retention for the IL cations. Four acids (hydrochloric, methanesulfonic, perchloric and trifluoroacetic) as mobile phase additives were compared in light of their effects on the retention of IL cations. It was shown that the retention of all IL cations decreased upon acidification of the mobile phase, possibly due to suppression of residual silanol ionization. Very fast (~3 min) and efficient RP-UPLC separation of six cations was achieved by gradient elution with acetonitrile–water mobile phase containing 2.5 mmol L−1 perchloric acid. In IP-UPLC all solutes were well resolved in about 4 min by gradient elution with acetonitrile–water mobile phase containing 1 mmol L−1 sodium 1-octanesulfonate as ion pairing reagent. Finally, under HILIC conditions by using isocratic elution with acetonitrile–water (85:15, v/v) mobile phase containing 5 mmol L−1 ammonium formate (pH 3.2) the separation time was reduced to less than 2 min while maintaining excellent peak shapes and sufficient resolution. Compared to current LC systems UPLC allowed considerably faster separations with better peak shapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.