Abstract
Uplands represent unique landscapes that provide a range of vital benefits to society, but are under increasing pressure from the management needs of a diverse number of stakeholders (e.g. farmers, conservationists, foresters, government agencies and recreational users). Mapping the spatial distribution of upland vegetation could benefit management and conservation programmes and allow for the impacts of environmental change (natural and anthropogenic) in these areas to be reliably estimated. The aim of this study was to evaluate the use of medium spatial resolution optical and radar satellite data, together with ancillary soil and topographic data, for identifying and mapping upland vegetation using the Random Forests (RF) algorithm. Intensive field survey data collected at three study sites in Ireland as part of the National Parks and Wildlife Service (NPWS) funded survey of upland habitats was used in the calibration and validation of different RF models. Eight different datasets were analysed for each site to compare the change in classification accuracy depending on the input variables. The overall accuracy values varied from 59.8% to 94.3% across the three study locations and the inclusion of ancillary datasets containing information on the soil and elevation further improved the classification accuracies (between 5 and 27%, depending on the input classification dataset). The classification results were consistent across the three different study areas, confirming the applicability of the approach under different environmental contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.