Abstract

Ghost forests consisting of dead trees adjacent to marshes are striking indicators of climate change, and marsh migration into retreating coastal forests is a primary mechanism for marsh survival in the face of global sea-level rise. Models of coastal transgression typically assume inundation of a static topography and instantaneous conversion of forest to marsh with rising seas. In contrast, here we use four decades of satellite observations to show that many low-elevation forests along the US mid-Atlantic coast have survived despite undergoing relative sea-level rise rates (RSLRR) that are among the fastest on Earth. Lateral forest retreat rates were strongly mediated by topography and seawater salinity, but not directly explained by spatial variability in RSLRR, climate, or disturbance. The elevation of coastal tree lines shifted upslope at rates correlated with, but far less than, contemporary RSLRR. Together, these findings suggest a multi-decadal lag between RSLRR and land conversion that implies coastal ecosystem resistance. Predictions based on instantaneous conversion of uplands to wetlands may therefore overestimate future land conversion in ways that challenge the timing of greenhouse gas fluxes and marsh creation, but also imply that the full effects of historical sea-level rise have yet to be realized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call