Abstract

ABSTRACT This study aimed to quantify the validity and reliability of load–velocity (LV) relationship of hill sprinting using a range of different hill gradients and to describe the effect of hill gradient on sprint performance. Twenty-four collegiate-level athletes performed a series of maximal sprints on either flat terrain or hills of gradients 5.2, 8.8 and 17.6%. Velocity–time curves were recorded using a radar device. LV relationships were established using the maximal velocity achieved in each sprinting condition, whilst force–velocity–power (FVP) profiles were established using only the flat terrain sprint. LV profiles were shown to be valid (R2 = 0.99) and reliable (TE < 4.4%). For every 1-degree increase in slope, subjects’ velocity decreased by 1.7 ± 0.1% on average. All the slopes used represented low resistance relative to the entire LV spectrum (<25% velocity loss). Subjects who exhibited greater horizontal force output at higher velocities on flat terrain were most affected by the gradient of the hill. Hills of gradients up to 17.6% do not provide sufficient resistance to optimize power development. However, such hills could be used to develop late-stage technical ability, due to the prolonged horizontally oriented body position that occurs as subjects attempt to overcome the acceleration due to gravity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call