Abstract
High-energy lithium metal batteries (LMBs) are expected to play important roles in the next-generation energy storage systems. However, the uncontrolled Li dendrite growth in liquid electrolytes still impedes LMBs from authentic commercialization. Upgrading the traditional electrolyte system from liquid to solid and quasi-solid has therefore become a key issue for prospective LMBs. From this premise, it is particularly urgent to exploit facile strategies to accomplish this goal. We report that commercialized liquid electrolyte can be easily converted into a novel quasi-solid gel polymer electrolyte (GPE) via a simple and efficient in situ gelation strategy, which, in essence, is to use LiPF6 to induce the cationic polymerization of the ether-based 1,3-dioxolane and 1,2-dimethoxyethane liquid electrolyte under ambient temperature. The newly developed GPE exhibits elevated protective effects on Li anodes and has universality for diversified cathodes including but not restricted to sulfur, olivine-type LiFePO4, and layered LiNi0.6Co0.2Mn0.2O2, revealing tremendous potential in promoting the large-scale application of future LMBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.